If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+12n-40=0
a = 4; b = 12; c = -40;
Δ = b2-4ac
Δ = 122-4·4·(-40)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-28}{2*4}=\frac{-40}{8} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+28}{2*4}=\frac{16}{8} =2 $
| 3x(x-4)+15=2(x+3) | | -8-6m-m=9m-8 | | -(4+x)=3x | | 4t+9=19 | | 3((-4y-4)/5)+4y=12 | | n/3+5=9 | | X/3=7+x | | 2n^2+6=300 | | 16=2t/3-4 | | -15.6=-1.3x+7.8 | | 3(3b+2)=24 | | 6(2x-3)+3x=72 | | 6x-(2x-5)=41 | | m^2=-17m-72 | | 5887+139.75x=350x | | x*2^-2=0.375 | | 0.006x-10111/x^2=0 | | -3/4+x=-27 | | 4+7l=3l | | 1340=x-26800 | | x(16-16)=6 | | x-26800=1340 | | 6(x-2)+5x=-23 | | x(16-16)=0 | | 7(w+3)=-2(6w-8)+9w | | 9z+2z=22 | | 8=q/2-32 | | 71=3c+17 | | 4x-7-x+12=-7 | | 50x=88 | | 24x=3x^2+48 | | 2x-4+2(7x+1)=-2(x+4) |